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Representation, representativity, representativeness error, forward interpolation error,

forward model error, observation operator error, aggregation error and sampling error

are all terms used to refer to components of observation error in the context of data

assimilation. This paper is an attempt to consolidate the terminology that has been

used in the earth sciences literature and was suggested at a European Space Agency

workshop held in Reading in April 2014. We review the state-of-the-art, and through

examples, motivate the terminology. In addition to a theoretical framework, examples

from application areas of satellite data assimilation, ocean reanalysis and atmospheric

chemistry data assimilation are provided. Diagnosing representation error statistics

as well as their use in state-of-the-art data assimilation systems is discussed within a

consistent framework.
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1. Introduction

At its core, data assimilation relies on comparing each available

observation of a variable with a prior estimate of the variable,

generally taken from a discrete dynamical model, to deduce a

revised estimate on the model grid. In the Bayesian formulation5

of data assimilation, this process of comparing and updating

requires knowledge of, or assumptions on, the error characteristics

or uncertainty properties of the observed value and of the prior

estimate. Among the difficulties encountered in this process is

that the discrete geophysical model is not able to represent all of10

the spatial and temporal scales, nor all the physical processes, of

the observed geophysical state and that additional approximations

are needed to represent the equivalent of any observation. The

prior estimate may therefore differ substantially from the observed

value, even in the absence of any measurement (or instrument)15

error, and this difference results in a perceived error that must

be accounted for in order to update the prior estimate properly.

For example, a perfect (measurement error - free) observation of

surface pressure at the center of a strong tropical cyclone will

typically be much lower than the forecast value from a numerical20

weather prediction model, resulting at least in a perceived bias to

be estimated in some way.

This basic difference between the modeled representation of

an observation and what is actually observed has generally

been handled by introducing what has been variously called25

representation, representativity, or representativeness error in the

literature. Thus, the observation error has two components, the

representation error and the measurement error. The aim of

this paper is to review some of the literature that has grown

around representation error in recent years, and in so doing,30

to explain and consolidate the terminology that has evolved in

different disciplines. The terminology has sometimes been used

inconsistently between different authors, so we first introduce

the basic terminology used in this article and discuss some of

the variations that have appeared in the literature. Representation35

error is distinct from, and does not include, the measurement (or

instrument) error, which is the error associated with the measuring

device alone, independently of how the measurements are used,

for instance in the data assimilation process.

One component of the representation error arises due to a 40

mismatch between the scales represented in the observations and

the model fields. For instance, an observation may represent

the value of a geophysical variable at a single point in space

and time, whereas the model prior will represent a spatial and

temporal average, depending, among other things, on the model’s 45

discretization. The observation and the prior will then differ, in

a way that depends on the true geophysical variability at scales

different than those represented by the model. An example is

illustrated in Figure 1, where the satellite image of a cyclone

shows much more spatial structure than its coarser resolution 50

model counterpart in which deep convection is parametrized. This

component of representation error is referred to as the error due

to unresolved scales and processes.

Another component of representation error arises from the

observation operator. Particularly for remote-sensing observa- 55

tions, such as satellite radiances, the observed variables are not

usually state variables. In this case, approximations are typically

involved in formulating the observation operators needed to pass

from state space to observation space. The resulting observation

operator error, or forward model error, also contributes to the 60

representation error.

Finally, quality control or pre-processing of observations can

introduce another type of representation error. Quality control

procedures are required in practice to reject observations that

cannot be modelled adequately, such as those affected by 65

incomplete knowledge of the appropriate observation operator

or by instrument calibration problems. These procedures often

depend on particulars of either the geophysical model or the

data assimilation algorithm (for example height assignment of

atmospheric motion vector observations or superobservations of 70

radar data). Furthermore, pre-processing is at times performed

to derive a quantity that is closer to the state variables of the

forecast model. This may introduce further errors depending

on the pre-processing algorithm (for example, the retrieval of

atmospheric variables from satellite radiances). Errors associated 75

with imperfections in these procedures that depend on the

geophysical model, observation operator or data assimilation

algorithm, here called pre-processing, or quality control errors,

will also be considered as part of the representation error. Those

Prepared using qjrms4.cls



On the representation error in data assimilation 3

that arise from incomplete knowledge of the observation operator80

can, of course, be thought of as part of the observation operator

error. Pre-processing of the observations that is independent of

components of the data assimilation process (i.e. the geophysical

model and data assimilation algorithm) will not be considered as

part of representation error, since in that case, the observations and85

the geophysical model can still be considered as two independent

sources of information on the current state of the geophysical

system.

Thus the representation error, as defined here, encompasses:

error due to unresolved scales and processes, forward model or90

observation operator error, and pre-processing or quality control

error. We will show in section 2 how representation error can in

theory be separated into these three parts, although the separation

is cleanest in the case of linear observation operators. Such a

separation becomes problematic, however, when it comes to the95

practical matter of diagnosing representation error statistics, for

it is difficult to distinguish between observation error and model

error, as discussed for instance by Dee (1995, 2005). We return to

this point in section 5.

Lorenc (1981, 1986) pointed out that the state that we want to100

estimate in atmospheric data assimilation is defined by the model

and, therefore, “observation error contains contributions from

variations on scales smaller than those we wish to analyze in both

space and time.” Even high resolution models in use today are not

able to capture all scales and resolve all processes of geophysical105

systems. Lorenc (1986) used the term representativeness error to

describe a difference between the observation and the model’s

equivalent of the observation. In the 1990s, both forward

interpolation error (Daley 1993; Mitchell and Daley 1997a,b) and

representativeness error (Lorenc 1986; Cohn 1997) were used.110

Forward interpolation error has its origin in the term forward

model, which was usually used to indicate a linearized version

of the observation operator in inverse theory literature. The term

error due to unresolved scales was introduced by Mitchell and

Daley (1997b) to distinguish the part of the error that arises115

from subgrid-scale processes. More recent literature (Waller et al.

2014b) has introduced the term representativity error. Note that

this term is not new when referring to the sampling error due

to the spacing in the observations. Daley (1991) also uses the

term representativeness error to refer to the sampling error of the 120

observation grid. For Schutgens et al. (2016) the term (spatial)

sampling error is a synonym for error due to unresolved scales and

processes. Etherton and Bishop (2004) and van Leeuwen (2015)

use the term representation error for error due to unresolved scales

and processes. Ponte et al. (2007) use the term representation error 125

for error that is composed of pre-processing error and error due

to unresolved scales and processes, while Janjić and Cohn (2006)

and Oke and Sakov (2008) use it for error due to unresolved scales

and processes and observation operator error.

Although in this paper we will focus on representation error 130

in the data assimilation context, there is a wide literature on

representation error in other contexts, such as when two different

types of observations are inter-compared, or in the context

of forecast verification. Common to these applications is that

two quantities are compared that represent different scales or 135

processes, e.g., different sampling volumes of two instruments.

In these contexts as well, different terminology has been used. For

example, Zawadzki (1975) used space smoothed data, Berenguer

and Zawadzki (2008, 2009) refer to scale-dependent errors, and

Bulgin et al. (2016b) and Seed et al. (1996) to (spatial) sampling 140

error for error due to unresolved scales and processes. The term

representativeness error was used as well in Kitchen and Blackall

(1992); Ciach and Krajewski (1999); Mandapaka et al. (2009).

While there is some commonality in the underlying issues in these

other areas, here our attention is restricted to the data assimilation 145

context.

We introduce the notation of this manuscript in section 2.

In section 3 we illustrate the representation error in different

applications and through theoretical considerations. Proper

specification of representation error statistics is important for 150

optimal use of the observations because it tells us how the

observations are to be assimilated in order to best adapt to the

model’s resolution. Also, accurate specification of these statistics

is important for verification of forecast results (Hamill 2001;

Bowler 2008; Candille and Talagrand 2008). However, it is 155

also necessary to modify the data assimilation algorithms to

include the representation error and its characteristics (i.e. state

and time dependencies, and spatial correlations). In section 4,

we will summarize a method of Janjić and Cohn (2006)
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Figure 1. Illustration of observation error εo, consisting of measurement error εm and representation error. The observation is denoted by y and its equivalent is obtained
by the discrete operator h acting on resolved state wr . See text in section 2 for details. Time index k is omitted in this illustration. Hurricane images in this figure are
courtesy of ECMWF.

derived for this purpose. In section 5, we review methods for160

modeling observation error statistics and, since representation

error introduces correlations in observation errors, we will discuss

the use of correlated observation errors in practice. We describe

previously unpublished experiments demonstrating the use of

ensembles for computing a part of representation error statistics.165

Further, we indicate how the representation error is included in

the observation space diagnostic approaches of Hollingsworth

and Lonnberg (1986) and Desroziers et al. (2005), and we

discuss current and future research challenges of diagnosing

and implementing correlated observation errors in operational170

data assimilation systems. Finally, in section 6 we discuss the

scale matching approach, which attempts to filter the data to

a resolution similar to that of the model, before assimilation.

Section 7 concludes the paper and summarizes directions for

future research.175

2. Definitions

As illustrated in Figure 1, the observation error, εo, consists of

a measurement error, εm, and a representation error, εR. On

the left we see visible satellite imagery, considered here to be

an observable arising from the true (continuum) atmospheric 180

state w, but not to be itself a state variable, and on the right,

similar imagery is shown at low resolution to represent imagery

from a numerical weather prediction model on its grid. An

arrow between these two images represents an (unknown) map

of the true state to the true (resolved) model state wr . The 185

instrument taking a measurement is represented by hc, the

(generally nonlinear) continuum observation operator that acts on

the true state to produce the observation y that is contaminated

with the measurement error. If the observation y is pre-processed,

it could be contaminated with the pre-processing error as well (see 190
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Appendix for more details in this case). To compare the model-

produced data and the observed data, it is necessary to apply a

discrete operator, h, to the model output. The difference between

the observation and the prior, y − h(wr), is then the sum of the

representation error and the measurement error.195

Both the full w and the resolved state wr are defined on

the continuum and therefore can be written as a vector of

functions in space x and time t. Each component of these

vectors is one dynamical variable (e.g. temperature) and therefore

mathematically a function, for both the resolved and full state, in200

the same function space (e.g., in L2). In what follows we always

assume that there is a one-to-one correspondence between the

geophysical model and wr(x, t), a property we will use explicitly

in section 5. For example, if the discretization of the numerical

model is spectral, wr(x, t) is a finite sum over weighted spherical205

harmonics, although the model itself would contain spherical

harmonic coefficients.

The observation operator error is an intrinsic part of the

representation error because the dynamical model dictates the

discrete observation operator. Here the nonlinear observation210

operators will be denoted with small letters and linear operators

with capital letters. If the result of the observation operator acting

on a state is a scalar then it is denoted h(wr) and if it is a vector

as h(wr).

In the following, we would like to mathematically define the215

categories of the error due to unresolved scales and processes and

observation operator error as well as motivate their names. The

observation error can be written as

εo = y − h(wr)

= hc(w) + εm + ε′′′ − h(wr)220

= ε′′′ + hc(w)− hc(wr)

+ hc(wr)− h(wr) + εm. (1)

Here h(wr) is a vector in observation space, denoting the

nonlinear observation operator h acting on the resolved state225

wr(x, t) defined on the continuum (in space and time). The true

(unknown) nonlinear observation operator hc can act on both the

full atmospheric state w(x, t) and the resolved state wr(x, t),

since we assume wr(x, t) is one possible realization of the state

of the atmosphere, i.e. mathematically both functions belong 230

to the same function space. The term εm is the measurement

error, and each instrument will have different measurement error

characteristics.

The term ε′′′ denotes pre-processing error. This error is

different for each observation type and will be described in more 235

detail in section 3.

The term

ε′ ≡ hc(w)− hc(wr) (2)

is the error due to unresolved scales and processes. Thus, 240

the error due to unresolved scales and processes defined in

(2) represents the difference between a perfect (noise-free)

observation and a perfect observation of the true resolved signal

that we would like to have. Note that since the observation

operator is not linear 245

ε′ 6= hc(w −wr). (3)

However, in the case of a linear observation operator, from (2) ε′ =

Hc(w −wr). The equation in the linear case motivates the name,

since then it is clear that the error depends on all of the scales 250

and processes unresolved by the geophysical model. Therefore

this error will exist as long as we are not able to completely

describe the full dynamical system being observed. However, as

will be illustrated in Example 2 of section 3.4, if hc filters the true

atmospheric signal to be of a lower resolution than wr , it may be 255

possible to minimize this error.

The term

ε′′ ≡ hc(wr)− h(wr) (4)

is associated with the observation operator error. The 260

observation operator error contains the error caused by an

approximation of the operator hc with h; for example,

representing the infinite-dimensional operator with its finite

dimensional approximation that acts only on resolved scales; or

not knowing perfectly all properties of the true system necessary 265
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6 Janjić et al.

to describe hc; or simply errors in approximations that are made

to minimize computational cost. As with error due to unresolved

scales and processes, for nonlinear observation operators, we have

ε′′ 6= [hc − h](wr).

Each of the components of observation error can have a bias,270

which would need to be accounted for in the application of data

assimilation algorithms. Using the Ide et al. (1997) notations,

the observation error covariance matrix will be denoted R, the

instrument error covariance matrix E and the representation error

covariance F, and R = E + F. The states defined only at discrete275

times such as analysis, forecast and their covariances will have

fixed time k as subscript.

3. Examples of representation error

How the representation error appears and is treated in data

assimilation applications is illustrated through examples of the280

assimilation of radiance data in NWP (subsection 3.1), for

ocean reanalysis (subsection 3.2) and for atmospheric chemical

modeling (subsection 3.3). Further, three theoretical examples

are given in subsection 3.4 that mathematically discriminate

the observation operator error and the error due to unresolved285

scales and processes. These are useful to aid our thinking, but

the boundaries between the categories may be blurred for some

observations as described next.

3.1. Use of radiance observations in NWP

By far the largest number of observations assimilated for global290

NWP are satellite radiances. Most commonly, the satellite

radiances are used in clear-sky conditions only, and a clear-

sky radiative transfer model serves as the observation operator

(e.g., Collard and McNally 2009; Bormann et al. 2013).

But increasingly, efforts to treat these observations in all-sky295

conditions are bearing fruit, and here the radiative transfer model

includes the effects of clouds or rain (Bauer et al. 2011). We will

consider both of these examples here.

For the representation error in satellite data assimilation, we

can think along the lines of the three categories introduced earlier,300

which can be identified as follows:

Observation operator error is the error associated with map-

ping the model fields to the observation-equivalent. In the

case of radiances, this is the error due to uncertainties

or approximations in the radiative transfer model used to 305

assimilate the data, for instance RTTOV (Matricardi and

Saunders 1999). Uncertainties in spectroscopic parameters

contribute to this error, along with inaccuracies in line-

shape models, or assumed gas concentrations that may

not be consistent with the truth (e.g., Dudhia et al. 2002; 310

Ventress and Dudhia 2014). Other approximations are also

usually made, such as discretization, approximations for

computational speed (e.g., Sherlock 2000), or the represen-

tation of the atmosphere as a single vertical column. Further

uncertainties arise from the instrument characterization: 315

response functions are often not accurately known and are

approximated (e.g. Chen et al. 2013). In strong-constraint

4DVAR, the forecast model also contributes to the obser-

vation operator error, a contribution that is particularly

relevant for assimilation of cloud-affected radiances due to 320

uncertainties in the physics parametrizations (e.g. Geer and

Bauer 2011).

Pre-processing or quality control error is the error associated

with imperfections in the preparation and selection of

the observations, in terms of either the derivation of 325

a quantity (e.g., the retrieval of an atmospheric profile

from satellite data; height for atmospheric motion vectors

Cordoba et al. 2016), or our ability to identify observations

that have un-modelled contributions and hence should

be rejected (Waller et al. 2016a). For clear-sky radiance 330

assimilation, this contribution is primarily the result of

failures in the cloud detection, aimed to remove cloud-

affected observations, so that a clear-sky radiative transfer

model can be used (e.g., McNally and Watts 2003). Such

quality control is never perfect and this can significantly 335

contribute to the error budget. For clear-sky radiance

assimilation, one could consider this error as observation

operator error instead, as it is an effect of neglecting

clouds in the forward model. But in operational practice,

reductions in pre-processing error are usually achieved 340

through changes in the quality control, rather than the
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forward model, so it is useful to think of it as a pre-

processing or quality control error. The increasing focus

on convective scale modeling and the assimilation of

cloudy radiances will remove the need to discard cloud345

affected observations and hence reduce the pre-processing

error. However, some quality control errors may still

exist, for instance, when identifying situations with known

deficiencies in the model clouds or radiative transfer.

Error due to unresolved scales and processes is the error350

associated with spatial and temporal scales as well as

features and processes represented in the observations and

not in the NWP model. For satellite sounding radiances,

the footprint sizes of most instruments vary between 15-

45 km, whereas the spatial scales represented in models355

are around 4 times the current typical horizontal model

resolution of 10-20 km for operational global models and

1.5-3 km for mesoscale models. For some features, such

as clouds, the spatial representativeness in models may be

much larger than this and is linked to the predictability360

of these features and physical parametrizations (e.g., Geer

and Bauer 2011). The differences lead to a mismatch

between the representation of spatial or temporal scales

in observations and NWP models. One could argue that

the error due to unresolved scales and processes would365

diminish as the model’s resolution increases. However,

even high resolution global models are not able to capture

all observed atmospheric scales. This is illustrated in

Figure 2. The upper two panels of Figure 2 show that

there appears to be more detail and structure in the370

clouds in the Met Office UKV model at 1.5km resolution

compared to the SEVIRI observations at approximately

6 km resolution. Conversely, the lower two panels of

Figure 2 show that there is more detail and structure in the

SEVIRI observations than in the modelled cloud in the Met375

Office global model at approximately 17 km resolution. As

illustrated in the figure, the differences between both model

forecasts and the observations are still very large, indicating

that the error due to unresolved scales and processes would

have different structure and make a large contribution to380

the observation error if the satellite data sets were to

be assimilated. If the unresolved scales contain a lot of

energy, as they may in the boundary layer or in convective

situations, then neglecting the representation error in data

assimilation would alias the unresolved signal onto the 385

resolved scales.

In satellite radiance assimilation, all three of these error

categories will contribute to varying degree. For clear-sky

assimilation of mid-tropospheric infrared temperature-sounding

radiances, the quality control and observation operator errors are 390

likely to dominate. In contrast, the error associated with how

clouds are represented in the forecast model is likely to be the

largest source of representation error in the assimilation of cloudy

radiances.

In the context of satellite data assimilation, the representation 395

error is usually estimated with diagnostic techniques discussed in

section 5, that is, the representation error covariance matrix F is

estimated together with the measurement error covariance matrix

E in the joint observation error covariance matrix R.

3.2. Example on ocean reanalysis 400

For ocean reanalysis, representation error arises primarily from

the error due to unresolved scales and processes. The topic of

representation error is handled briefly in most oceanographic

literature (e.g. Guinehut et al. 2012; Good et al. 2013). An

exception is the careful examination of the representation error 405

associated with satellite altimetry by Oke and Sakov (2008).

Here we revisit Oke and Sakov (2008) in the context of satellite

altimetry and then examine two additional measurement systems:

tropical moored temperature time series where unresolved

temporal scales are evident, and surface drifter velocity where 410

unresolved physical processes are important contributors to the

error due to unresolved scales and processes.

The error due to unresolved scales and processes is the error

introduced by the presence in the observations of signal

due to motion at scales below those resolved by the 415

model, as well as signal due to processes that are not

included in the model (Lorenc 1986; Oke and Sakov

2008). The current generation of ocean reanalyses are
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8 Janjić et al.

Figure 2. Observed (left panels) and simulated (right panels) SEVIRI 10.8micron IR channel imagery for the Met Office UKV (upper panels) and global (lower panels)
models over the North Atlantic and European area. The UKV case is taken from 15z on 24th August 2015 and the global case is taken from 06z on 19th October 2015.
Simulated imagery is produced by running a radiative transfer model on NWP model output and preserves the resolution of the model (Blackmore et al. 2014).

built around global general circulation models of the

ocean and sea ice systems solving the primitive equations420

of motion and conservation equations for temperature

and salt. These equations, as implemented in the current

generation of models, such as the Geophysical Fluid

Dynamics Modular Ocean Model version 5, include a

number of approximations such as the assumption that425

gravity is constant (excluding gravitational tides), that

motion has time-scales longer than a day (damping internal

gravity waves and diurnal convection), and parameterizing

important unresolved processes (such as salt fingering and

eddy mixing). Current model implementations have typical430

resolutions of 0.25◦ × 0.25◦ × 10 m in the upper ocean.

Such a model resolution is, for example, insufficient to

describe the ocean eddy field, whose scales vary from

200 km in the tropics to 10 km in the Arctic.

A satellite altimeter is a radar that measures the time it 435

takes for a radar pulse to travel from the satellite to the

ocean surface and back, and thus infers sea level, typically

along the nadir of the satellite track. The JASON series

of satellites are in an exact repeat orbit with a period of

slightly less than 10 days, an equatorial spacing of the 440

orbit tracks of 3◦, and an along-track sampling of about

4 km (signal averaging during one second of satellite flight-

time). An example of the resulting sea level for the western

South Atlantic is shown in Figure 3. Oke and Sakov (2008)

use an objective mapping with a few hundred kilometer 445

spatial scale and two week time-scale such as that shown

in Figure 3 (upper panel) to represent the model. The

difference between this map and the one second sea level

sampling (black line in an example shown in Figure 3

lower panel) is treated as the error due to unresolved scales 450
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Figure 3. (Upper) Sea level anomaly in the western South Atlantic averaged 1-
14 September, 2014, reconstructed from Jason-2, SARAL/AltiKa, and CryoSat
satellite altimetry. Warm colors represent elevated sea level while cool colors
represent depressed sea level (units are meters). (Lower) Sea level anomaly (black)
sampled at 1 second intervals along a single ascending JASON-2 pass (cycle 227,
pass 137), whose position is shown in black in upper panel. Several warm and cold
core eddies are evident with amplitudes of tens of cm. Sea level anomaly derived
from altimetry must be corrected for a number of unresolved processes. One of
the largest corrections is for aliasing due to the presence of primarily semidiurnal
gravitational tides (blue) which is unresolved by the ten-day sampling of the JASON
altimeters. Data were provided by Dr. Eric Leuliette of the NOAA Laboratory for
Satellite Altimetry.

and processes. A visual inspection reveals the presence

of an unresolved signal of several centimeters, which also

includes the two centimeters measurement error. Although

not emphasized in Oke and Sakov (2008), their use of the

observations to estimate the error due to unresolved scales455

and processes means that spatially correlated errors in the

observations, such as the 1000 km scale correction for

aliasing by semidiurnal tides (Figure 3 lower panel, blue

line), will appear in both and thus be excluded from the

difference in their approach.460

Representation error due to unresolved temporal scales is

most evident in pure form in observation time series such

as those produced by the Rama (Indian Ocean), TAO/Triton

(Pacific Ocean), and PIRATA (Atlantic Ocean) tropical

moored arrays. Figure 4 shows a ten-month time series of465

six-hourly temperature at 40 m depth (black) and 100 m

20

22

24

26

28
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28

28.5

29

29.5

30

2/15/2015 5/26/2015 9/3/2015 12/12/2015

Daily Temperature  (5N, 140W)

Figure 4. Daily average temperature as recorded at two depths, 40 m (black), and
100 m (blue) at the TAO-Triton mooring at 5◦N, 140◦W in the tropical eastern
Pacific Ocean. Temperature at 40 m reflects the temperature of the bulk mixed layer
and shows 0.25◦C quasi-daily fluctuations superimposed on seasonal warming
associated with the current El Nino. Temperature at 100 m shows even larger
0.5◦C quasi-daily fluctuations that are most prominent in northern spring when
the thermocline is shallow at this location.

depth (blue) at a location a few degrees north of the

Equator in the Eastern Pacific. Temperature at 40 m depth

shows 0.25◦C daily fluctuations superimposed on dramatic

seasonal warming reflecting the onset of the 2015/16 470

El Nino. These daily fluctuations reflect local surface

heating and wind stirring processes unresolved by the ocean

reanalyses. At 100 m depth larger 1◦C daily fluctuations

result from internal wave-related vertical excursions of the

thermocline, whose explicit physics is excluded by the 475

numerical time-stepping and hydrostatic assumption. These

100 m fluctuations are most evident in northern spring when

the stratification is strongest at this depth, thus illustrating

how seasonality may enter the representation error due to

shifts in the background state. 480

Velocity observations from a surface drifter contain as

well representation error that is due to unresolved physics.

This error is spatially and temporally correlated due to the

Lagrangian nature of the observations. Surface drifters and

freely floating surface buoyed drifters with drogues at 15 m 485

depth that are designed to track the horizontal movement of

water in the mixed layer. In Figure 5 the changing position

of one drifter in the subtropical North Pacific during a

35-day period is displayed. The position track shows the

characteristic scallop shape of local wind-forced inertial 490

oscillations, whose period at this latitude is about 28 hours.

These inertial oscillations may introduce velocity errors

of 10 cm/s or larger, however their spatial inhomogeneity

makes removal by simple time filtering problematic. How

best to handle such Lagrangian observations remains an 495

open question.
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Figure 5. (left) Six-hourly position of a 15 m drogued surface drifter (Number 101905) in the central North Pacific during a 35-day period beginning on 14 February,
2014 (position indicated by the solid dot). The scalloping of the track is the result of local wind-forced inertial oscillations superimposed on large-scale motion. (right)
Time series of the zonal component of velocity during the five days 14 to 19 February estimated from six-hourly position measurements at left. Note the strong imprint
of inertial oscillations on velocity estimates. Drifter data obtained from the NOAA Atlantic Oceanographic and Meteorological Laboratory GDP Drifter Data Assembly
Center.

For the altimetric measurements pre-processing error would

for example include correction of data for tides through

tide models. Representation error due to modeled tides,

is usually set to a constant value although it is known500

that spatial variability exists. In addition, altimetric data

are corrected for the wrong atmospheric pressure with the

simple inverted barometer correction. This part of pre-

processing error is usually larger than tide errors (Ponte

et al. 2007).505

For the current generation of ocean reanalyses, the represen-

tation errors are typically modeled by combining them with an

estimate of measurement error into a single observation error

covariance matrix which is also assumed homogeneous, spatially

uncorrelated, and stationary in time (e.g. Carton and Giese 2008;510

Li et al. 2015).

3.3. Example on air pollution/atmospheric

chemistry/greenhouse gases

In atmospheric chemistry studies, the representation errors

are crucial in explaining the mismatch between model and515

observations. They are significantly larger than the instrument

errors. The representation errors are mostly of the unresolved

scales and processes type but can also be due to what we defined

as observation operator error, depending on the nature of the

control variables.520

That is why we will, in the following, distinguish between: (i)

the case where the control variables are pollutant concentrations

directly related to concentration measurements, e.g., in air quality

forecast studies, (ii) the case where the pollutant emission fluxes

are the control variables, e.g., in greenhouse gas inverse modelling 525

studies.

In the air pollution context where the control variables are the

pollutant concentrations, representation error is mostly due

to unresolved scales and unaccounted subgrid processes.

In situ measurements of pollutants are strongly impacted 530

by the locations of the observation stations. The air

pollutant concentrations depend on the topography, the

local meteorological climatology, and the proximity to

sources and sinks of primary species (Koohkan and

Bocquet 2012). That explains why, in most air pollution 535

studies, a qualitative classification is used to discriminate

the stations. One distinguishes: (i) the background stations,

which are meant to be representative over large distances

and possibly match the model resolution, (ii) the rural

stations, also quite representative but affected by rural 540

(chemical) conditions, and (iii) suburban and urban stations

more impacted by the human activity, dense traffic and

industries, urban heating, and urban topography. The

classification of the stations can be obtained using statistics

on past observations (Joly and Peuch 2012). Based on such 545

a classification, the observations would be used differently

or not used at all. In data assimilation studies, their

error statistics would be determined by such preliminary

classification (Elbern et al. 2007). The error due to

unresolved scales and processes, both spatial and temporal, 550

are also present when using satellite data estimation
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of constituent concentrations (Boersma et al. 2015), in

addition to the observation operator error due to retrieval

assumptions.

Representation error also plays a major role in atmospheric555

chemistry inverse modelling studies, focused on the

retrieval of pollutant emissions. In this context, the control

variables are the discretised emission fluxes which model

the true pollutant emission field. For these control variables,

representation error is often called aggregation error.560

Quite often, especially when the transport and chemical

model is approximately linear, the model is defined by

the sensitivity matrix of the observations to the emission

control variables, which is then called the observation

operator (or Jacobian, or source-receptor matrix, etc.) as565

it directly relates the observations to the unknown fluxes.

In this case, representation error is due to both unresolved

scales of the emission fields (the coarse discretization of

the control space of the fluxes), as well as observation

operator error, i.e. any error in the construction of the570

forward operator. Aggregation error has a strong impact

in inverse modelling studies of pollutant sources, fluxes

and sinks. One way to regularize an inversion with high-

resolution control space of unknown emission fluxes, i.e.

to make it less underconstrained, is to aggregate these575

fluxes. This comes with the price of representation error

(Kaminski et al. 2001). The issue has been examined

quite early in inverse modeling of greenhouse gas fluxes

meant to refine the greenhouse gas budget. The goal is

to find the optimal compromise minimizing the total error580

between the analysis error (due to underdetermination)

and the representation error (Peylin et al. 2001). In the

absence of model error, and using a formal expression of

the representation error, it was shown that such balance

does not exist in theory. Higher resolutions systematically585

increase the information gain in the inversion (Bocquet

et al. 2011; Wu et al. 2011), provided the representation

error is well estimated and accounted for in the data

assimilation scheme. This theoretical result is little affected

by resolution-dependent model error and approximation in 590

the inversion scheme (Turner and Jacob 2015).

In the context of atmospheric chemistry data assimilation,

the representation error issue can be partly addressed using

several distinct methods. In air quality studies, one can make

use of the station classification mentioned above which would 595

be determined in a prior stage (Gaubert et al. 2014). The

representation error in inversion studies can be estimated and

used to design a fluxes space adaptive grid that, for any given

number of parameters, minimizes the representation error while

maximizing the information content of the observations (Bocquet 600

et al. 2011). Other studies use more general error estimation

techniques, such as those discussed in section 5 in order to

estimate the representation error (Schwinger and Elbern 2010).

Representation error can sometimes be parametrized using an

adaptative statistical approach, i.e. the new parameters that 605

measure the representation error of each station are estimated

within the data assimilation scheme (Koohkan and Bocquet 2012).

Illustration We illustrate the estimation of the representation

error with the inversion of sources of carbon monoxide (CO) over

France (Koohkan and Bocquet 2012) using in situ measurements. 610

The observation network has 80 stations that measure CO hourly

concentrations. The stations that are close to urban areas or in

the vicinity of industries are mainly and strongly impacted by

local sources. A Eulerian chemistry transport model at a resolution

of 25 kilometres cannot account for those subgrid processes. 615

As a result, while the measurements can be highly peaked, the

coarse resolution CO simulation is not able to quantitatively

reproduce those peaks. This can be seen in Figure 6 where the

blue curve corresponds to the observation profile, while the red

curve corresponds to the free simulation. A 4D-Var estimation 620

of the fluxes is highly impacted by the representation error and

artificially increases the estimated fluxes so as to account for

the bias. A subgrid scale model that relates the source to the

local inventory defined at coarse resolution is parametrized for

each station by an a priori unknown representation factor. The 625

80 factors, one for each station, are jointly estimated with the

fluxes. This allows estimation of the representation error, an

objective characterization of the stations, and leads to an important
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Figure 6. Observation and simulation of CO concentrations in Paris at Auteuil station during the first hours of January 2005 using source inventories obtained: without
correction, with 4D-Var, and with 4D-Var that accounts for the representation error via a statistical adaptation.

correction in the 4D-Var estimates (black curve), with a bias

which is very significantly reduced. Carbon monoxide forecasts630

are considerably improved using this method.

3.4. Theoretical examples

Both error due to unresolved scales and processes and observation

operator error depend on the geophysical model and observation

operators. Here we would like to illustrate them with idealized635

examples and show how they interact depending on the

observation operator properties and the resolved scales (Janjić

2001).

Example 1. For x ∈ [0, 2π], let us define wr(x, t) as a Fourier

truncation of a scalar field w(x, t); that is,640

wr(x, t) ≡
N∑

n1=−N
ŵ(n1, t)e

in1x, (5)

where N is given through the dynamical model and ŵ(n1, t) are

Fourier coefficients of the full state w(x, t). Furthermore, suppose

that there is a single observation and that Hc and H are bounded,645

linear operators; that is, the result of applying the observation

operator is a scalar,

Hcw(·, t) =

∫ 2π

0

w(x, t)c(x) dx, (6)

650

Hwr(·, t) =

∫ 2π

0

wr(x, t)d(x) dx, (7)

for some instrument weighting functions c(x) and d(x). For

example, c(x) can be a Gaussian with the length scale Lc, i.e. up

to a constant c(x) = e−x
2/(2L2

c), and d(x) can be a Gaussian with 655

a different length scale Ld, i.e. d(x) = e−x
2/(2L2

d).

From (2), the error due to unresolved scales and processes is

ε′ =

∫ 2π

0

(w(x, t)− wr(x, t))c(x) dx, (8)

hence, by the Parseval-Plancherel formula and (5), 660

ε′ = 2π
∑
|n1|>N

ŵ(n1, t)ĉ(−n1), (9)

containing all the wavelengths not resolved by the model.

The observation operator error, from (4), can similarly be

calculated as 665

ε′′ = 2π

N∑
n1=−N

ŵ(n1, t)(ĉ(−n1)− d̂(−n1)). (10)

We see that if d̂(n1) = ĉ(n1) for n1 = −N, . . . , N , then ε′′k = 0. In

case of Gaussian weighting functions, ĉ(−n1) = c̄e−n
2
1L

2
c/2 and

d̂(−n1) = d̄e−n
2
1L

2
d/2, with some constants c̄ and d̄, (10) results in 670

non-zero observation operator error ε′′ with potentially significant

contribution for the small wave numbers.
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Also, if we further discretize (7), then we would have, for

example,

Hwr(·, t) =

j∑
i=1

d̃(xi)w
r(xi, t), (11)675

where d̃(xi) are interpolation coefficients here. Therefore, the

observation operator error may not be zero even if d̂(n1) = ĉ(n1).

It would depend on the scales present in the model, how well we

are able to represent function cwith d, and what kind of quadrature680

formula we have used in (7).

Example 2. Now consider the case where the observation

operator has a lower resolution than the model, analogously to

the satellite data. If we would have a perfect filter, ĉ(−n1) = 0 for

n1 > p, where p is some integer smaller than N , then the error685

due to unresolved scales and processes from (9) is zero. If, on the

other hand, the weighting function is Gaussian, the error due to

unresolved scales and processes would not be zero and will again

depend on all of the scales unresolved by the model.

For the perfect filter case, the observation operator error can be690

calculated as

ε′′ = 2π

p∑
n1=−p

ŵr(n1, t)(ĉ(−n1)− d̂(−n1))

+ 2π

−p−1∑
n1=−N

ŵr(n1, t)(−d̂(−n1))

+ 2π

N∑
n1=p+1

ŵr(n1, t)(−d̂(−n1)). (12)
695

From (12), we note that the observation operator error could be

made smaller once appropriate filtering is done on the model’s

fields in order to compare them to the low resolution observations.

Therefore, when the observation operator has a lower resolution

than the model, scale mismatch would still depend on the700

unresolved scales and processes. Further representation error

might be smaller if the appropriate filtering of the model’s fields

could be found.

Example 3. So far we have considered a spectral discretization

of the model. In this example, suppose that wr(x, t) is the705

piecewise constant approximation of w(x, t) on intervals In1 =

[xn1 − ∆x
2 , xn1 + ∆x

2 ] with equally spaced collocation points

xn1 ∈ [0, 2π], n1 = −N, ..., N and distance ∆x. Further suppose

that there is a single observation, and that Hc and H are bounded,

linear operators given by (6) and (7). Since Hc is linear, the error 710

due to unresolved scales and processes once again depends on

w(x, t) and c(x); that is,

ε′ =

N∑
n1=−N

∫
In1

c(x)

[
w(x, t)− 1

∆x

∫
In1

w(z, t)dz

]
dx. (13)

The formula (13) has been used, for example, in estimating the 715

representation error from the data in the study by Oke and Sakov

(2008). Note that the observation operator error ε′′ = 0, if

Hwr(·, t) =

N∑
n1=−N

wr(xn1 , t)

∫
In1

c(x)dx. (14)

This example illustrates the relative nature of the representation 720

error whose properties (compare (9) and (13)) depend on the

geophysical model one is using.

4. Including representation error in the data assimilation

algorithms

As pointed out by Cohn (1997), in order to take representation 725

error into account, data assimilation on the continuum needs to

be considered. Here, we first review the methods of including the

error due to unresolved scales and processes in the Kalman filter

algorithm that were presented in Janjić and Cohn (2006). The

interested reader may also like to explore Cohn (1997); Bocquet 730

et al. (2011); Hodyss and Nichols (2015); van Leeuwen (2015)

who use a Bayesian approach. A brief treatment of the observation

operator error is given in section 4.2.

4.1. Including error due to unresolved scales and processes in

the Kalman filter algorithm 735

In this section we focus only on the error due to unresolved scales

and processes; the observation operator error and pre-processing

error are assumed negligible. To simplify the notation, the state

we would like to estimate is assumed to be a scalar field in this

section. In the presence of error due to unresolved scales, the 740

observation error is spatially and temporally correlated. However,

let us consider the augmented vector of the resolved and the
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unresolved scales,

w̃(x, tk) ≡

 wr(x, tk)

wu(x, tk)

 , (15)

where both the resolved, wr , and unresolved scales, wu = w −745

wr , are defined on the continuum (see section 2). The Kalman

filter equations can be formally be written for the augmented

vector. Our objective is to estimate wr(x, tk) at a fixed time tk,

which represents the truth which is resolved by the model.

The dynamics of the large and small scales of the true signal750

are typically coupled in nonlinear systems. Janjić and Cohn

(2006) assume instead the following equation for the continuum

dynamics,

 wr

wu

 (x, tk+1) =Mk+1,k(w̃(x, tk)) =

 Mr
k+1,k 0

Mur
k+1,k Mu

k+1,k


 wr

wu

 (x, tk).

(16)

755

In (16) the resolved scales are only influenced by the ‘resolved’

scale dynamics. Subgrid-scale parametrizations approximate the

feedback from the unresolved scales to the resolved ones so that

the Mr
k+1,k can more accurately represent the large-scale part760

of the true dynamics. The subgrid-scale parametrization can be

assumed to already be a part ofMr
k+1,k. The alternative of adding

them explicitly in (16) through Mru
k+1,k is not explored here.

Although the unresolved scales evolve depending on both the

resolved and unresolved scales, we do not have a geophysical765

model of their evolution.

The observations

yk = hck(w̃(·, tk)) + εmk ≈
[

hk huk

] wr(·, tk)

wu(·, tk)

+ εmk (17)

contain contributions from both the resolved and unresolved

scales. Note that for the augmented state vector, the observation770

error is not spatially and temporally correlated since it consists

of measurement error only. We assume here that the observation

operator hck is such that we can write the observation as a sum of

hk(wr(·, tk)) and huk(wu(·, tk)). Here hk and huk are observation

operators that take us from the corresponding state space to 775

observation space and act only on the spatial dimension denoted

with a dot, for example hk(wr(·, tk)). A simple derivation of the

main idea can be done assuming linear observation operators, i.e.

h = H, hu = Hu and hc = Hc as in Janjić and Cohn (2006)

under the assumption ∆H = Hc −H = 0. In order to take into 780

account nonlinear observation operators, the ensemble Kalman

filter approach could be used once the equations are derived,

that approximates the covariances through the ensemble on which

nonlinear observation operators are applied first.

The forecast (analysis) error covariance for the augmented state 785

for any two points in space x1,x2 and discrete time k can be

written in the form

 Brrk (x1,x2) Bruk (x1,x2)

Burk (x1,x2) Buuk (x1,x2)

 . (18)

Here, the covariances Bru and Bur describe the cross-

correlations between the resolved and unresolved scales, while 790

Buu is the covariance of the unresolved scales. From the Kalman

filter equations for the augmented space, we can obtain equations

for the estimation of resolved scales only, which, however require

us to estimate simultaneously the unresolved scales.

As a first approximation Janjić and Cohn (2006) suggest 795

disregarding the estimation equation for wu and this yields

the Schmidt-Kalman filter (Jazwinski 1970, p. 285). In the

Schmidt-Kalman filter, wr,fk , wr,ak , Brr,fk and Brr,ak representing

the forecast and analysis of the resolved scales and their error

covariances, are estimated. The error covariance of the unresolved 800

scales is not calculated during the assimilation and is therefore

different from Buuk . In order to emphasize this we will label in

the following the error covariance of the unresolved scales by

Wuu
k . Besides Wuu

k , there are a couple of new terms compared

to the standard equation of the Kalman filter (e.g. Nakamura 805

and Potthast 2015) in the Schmidt-Kalman filter equations. These

equations require estimates of the mean of the unresolved scales

Hu
k < wu(·, tk) > at the observation locations, the covariance

between the resolved and the unresolved scales Bru,ak , and

estimates of the unresolved covariance at the observation points. 810
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A term Hu
k [Hu

kW
uu
k (·, ·)]T appears in the estimation equation

for wr,ak in order to reduce the accuracy of the observation

taking into account that we do not have an observation of wrk

only. The inclusion of the cross covariance Bru,ak allows a small

scale signal in the observations to influence the estimation of815

the resolved scales. Neglecting this term gives too little weight

to the resolved scale covariance compared to the observations.

Once the analysis is computed, the evolution in time of Bru,ak

will require knowledge of the evolution of the unresolved scale

dynamicsMur
k+1,k,M

u
k+1,k.820

Neglecting the correlation between the resolved and unresolved

scales in the Schmidt-Kalman filter formulation, we come to

wr,a
k (x) = wr,f

k (x)

+Kr
k(x)

(
yk −Hkw

r,f
k (·)−Hu

k < wu(·, tk) >
)
, (19)

825

Kr
k(x) =

(
HkB

rr,f
k (x, ·)

)T
O−1

k , (20)

Brr,a
k (x1,x2) = Brr,f

k (x1,x2)−Kr
k(x1)HkB

rr,f
k (·,x2), (21)

830

Ok = Hk[HkB
rr,f
k (·, ·)]T +Hu

k [H
u
kW

uu
k (·, ·)]T +Ek. (22)

This is the traditional filter which was suggested in Lorenc

(1986). In Cohn (1997), a Bayesian derivation is proposed

for this filter, which requires that the temporal correlation, as

well as the cross correlation between scales are neglected. The835

appropriate equivalent of the traditional filter equations are used

in variational data assimilation methods, where to our knowledge

equations similar to the Schmidt-Kalman filter have not been

derived to date. Note that the Schmidt-Kalman filter does not

require us to make an assumption of no correlation between the840

background and observation error, which is not valid due to the

presence of unresolved scales. Both filter formulations require

that additional covariances be estimated. Although the traditional

filter formulation requires estimates of only the mean and error

covariance of the unresolved scales (see (19) and (22)), Grooms845

et al. (2014) suggest the use of stochastic physics for the mean

and for the covariance of the unresolved scales. We believe that

this would be a promising approach for the Schmidt-Kalman

formulation as well.

The difference between the traditional and the Schmidt-Kalman850

filter results may not be very large, depending on the amount of

energy in the resolved scales and the decorrelation time between

the resolved and unresolved scales. For example, Janjić and Cohn

(2006) have an idealized two-dimensional example of a passive

tracer being advected on a sphere in the presence of wind shear. 855

In it, both the traditional and Schmidt-Kalman filter perform very

well, converging to the solution. Only small differences are seen in

their performance towards the end of the assimilation, when also

the trace of true covariance is smaller than the estimated one for

the traditional filter. 860

4.2. Including observation operator error in the Kalman filter

algorithm

In section 4.1 we made an assumption that ∆H = Hc −H = 0.

Now consider the case where this assumption does not hold. Let

us assume that we will be using either the Schmidt-Kalman filter 865

or traditional filter to include the error of unresolved scales when

estimating wrk(x). In the case ∆H 6= 0 the estimation equation

for wrk(x) needs to be augmented further for the correction due

to the error in the observation operator (Gelb 1974) or simply the

correction terms can be derived as in Jazwinski (1970, p. 245). As 870

shown in Jazwinski (1970) the error in the observation operator

would produce a bias, ma
k(x), that would need to be corrected

for in wr,ak (Dee 2005; Auligne et al. 2007). The bias would be

propagated in time with the resolved scale dynamics and initially

would be zero, while at analysis times would satisfy the formula: 875

ma
k(x) = [I−KrHk]Mr

k,k−1m
a
k−1(x)−Kr∆Hk < wrk > .

(23)

If we correct only the bias, the analysis error statistics calculated

either through the Schmidt-Kalman filter or through the traditional

filter would not be correct and therefore in addition evolution

equations for the correlation between the error and the state would 880

need to be included (Gelb 1974; Jazwinski 1970).

5. Diagnosing and using correlated observation error

covariance matrices in data assimilation

Representation error depends on the continuum state of the

dynamical system; therefore, it is state and time dependent. 885

Due to its dependence on the state of the geophysical

system, representation error can introduce spatial correlations
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in the observational error statistics. The contribution of the

representation error is difficult to estimate because it depends

on both the geophysical model and the observations we use. If890

the representation error is underestimated, then we would fit the

analysis to what the model considers to be noise; while if it

is overestimated, then we are discarding useful information. In

practice, assigned variances of observation error are commonly

inflated, to counter-act and reduce the effect of neglected895

observation error correlations (Courtier et al. 1998; Bormann

et al. 2016). For variable model resolutions, the estimates of the

representation error also need to be scale adaptive. Attempts have

been made to estimate statistics of the error due to unresolved

scales and processes by assuming that a higher resolution model900

represents the true state(Etherton and Bishop 2004; Ponte et al.

2007; Waller et al. 2014b) or that higher resolution observations

represent the truth (Oke and Sakov 2008). In addition, statistical

adaptation within the data assimilation scheme has been suggested

as a novel means to estimate the statistics of this error (Koohkan905

and Bocquet 2012) as well as stochastical models (Grooms

et al. 2014). Attempts have also been made to estimate the full

representation error statistics by assuming a structure for the

covariance and then estimating its parameters (Ménard et al.

2000; Janjić and Cohn 2006). Ponte et al. (2007) estimate pre-910

processing errors for altimeter data based on tide model errors

and differences between atmospheric models for pressure driven

signal corrections. The interested reader may also like to explore

other techniques, such as the maximum likelihood method of Dee

and da Silva (1999), the method based on analysis innovation915

statistics of Desroziers and Ivanov (2001), the online estimation

method of Li et al. (2009), the adjoint sensitivity method of

Daescu and Todling (2010), the method proposed in Karspeck

(2016) that uses an ensemble of model simulations, and the

Bayesian estimation approach of Ueno and Nakamura (2016).920

In addition, methods based on observations that have different

sampling volumes can be used to estimate the statistics of

representation error (Ciach and Krajewski 1999; Berenguer and

Zawadzki 2008, 2009; Bulgin et al. 2016b).

Recently, a number of authors have begun to consider925

estimating and using representation error statistics in data

assimilation using diagnostic methods. In this section we review

techniques for diagnosing the full observation error covariance

matrix from observation minus forecast and observation minus

analysis residuals and from alternatives, physically-based error 930

inventories and an ensemble approach. We also discuss methods

for implementing fully correlated observation error covariance

matrices in data assimilation.

5.1. Diagnostic methods

Quantifying observation error correlations is not a straightforward 935

problem. A particular issue is that the distinction between biased

and correlated errors can be blurred in practical contexts (Wilks

1995, section 5.2.3). Methods considered in this section assume

a priori that biases in observations and in background model

states are removed. In addition, for practical applications of the 940

diagnostics, temporal and/or spatial averaging may be needed in

order to obtain sufficient samples. Hence, any state dependence

in the errors will only be detectable if it is slowly varying

(Waller et al. 2014a). Furthermore, these methods make no

attempt to calculate the separate contribution from each source 945

of representation error.

In this section we focus on the techniques currently

enjoying the most popularity: the Hollingsworth-Lönnberg

method (Hollingsworth and Lonnberg 1986) and Desroziers et al.

(2005) diagnostic. Recently, Hodyss and Nichols (2015); Hodyss 950

and Satterfield (2016) have pointed out that these methods only

deliver correct observation error covariance estimates with typical

current assimilation systems if there is no model error on the

resolved scales, otherwise the estimates will include a portion of

the background error covariance. New versions of the diagnostics 955

that allow estimation of the model error covariance have been

published recently (Howes et al. 2017; Bowler 2017). However,

in this paper we only discuss the standard diagnostics. These

diagnostics are relatively simple to implement, and use data that

are commonly output from operational assimilation systems. 960

The Hollingsworth-Lönnberg method (Hollingsworth and

Lonnberg 1986) makes use of forecast residuals, often called

innovations. These are defined as

dof = y − h(wf ), (24)
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and represent the difference between the observation y and the965

mapping of the model forecast vector, wf , into observation space

by the modelled (nonlinear) observation operator h. Equation

(24) can be expanded to make its dependence on representation

error more explicit, using the notation of section 2, with wr

representing the truth. Thus, we have970

dof = hc(w) + εm + ε′′′ − h(wf )

= εm + ε′′′ +
[
hc(w)− h(wr)

]
+
[
h(wr)− h(wf )

]
≈ εm + εR + H(wr −wf )

= εm + εR + Hεf , (25)

where H is the linearized version of the observation operator,975

εm is the instrument error and εf is the background error.

The representation error εR contains errors due to unresolved

scales, observation operator error and pre-processing error. If

the background errors and observation errors are mutually

uncorrelated then taking the statistical expectation of the outer980

product of the innovations results in

E[dofd
o
f

T
] ≈ HBHT + R = HBHT + E + F, (26)

Note that B, E and F (see section 2) all represent the true

covariance matrices in this equation, but H is the linearization

of the approximate observation operator, which may be quite985

inaccurate. The assumption, used in the calculation, that

observation and background errors are mutually uncorrelated

may not hold in practice e.g., if background fields are used

in observation pre-processing or in the presence of unresolved

scales. However, it is a commonly used assumption in data990

assimilation.

The Hollingsworth-Lönnberg method separates contributions

from background and observation errors in innovation statistics,

assuming that the background errors carry spatial correlations

while the observation errors do not. For example, Stewart et al.995

(2014) used the method for IASI data to estimate observation

error variance. With additional assumptions on the background

error statistics, the method was modified to account for correlated

errors in the observations by Garand et al. (2007) for AIRS data,

showing significant inter-channel error correlations. Bormann 1000

and Bauer (2010) and Bormann et al. (2010) applied the

method to ATOVS, AIRS and IASI data used in the ECMWF

analysis, again demonstrating considerable correlation structures

in certain wavelength bands. However, when observation errors

are correlated, deciding how to split the contributions between 1005

observation error and background error may be difficult and

is subjective. Furthermore, this splitting is often obtained by

fitting correlation functions to the innovation statistics; in this

case the resulting observation and background error statistics are

highly dependent on the choice of the fitted correlation function 1010

(Bormann and Bauer 2010).

Continuing under the assumption that background errors

and observation errors are mutually uncorrelated, Desroziers

et al. (2005) found a method to separate observation and

background errors with autocorrelations. Initially proposed as 1015

a consistency check, this method uses post-analysis diagnostics

from linear estimation theory to approximate the covariances of

the observation errors. We assume that the analysis is determined

using

wa = wf + B̃HT(HB̃HT + R̃)−1dof , (27) 1020

where H is the observation operator linearised about the

current state and R̃ and B̃ are the assumed observation and

background error covariances used to weight the observations

and background in the assimilation. This notation makes explicit

the distinction between assumed covariance matrices used in the 1025

assimilation (with tildes) and covariance matrices describing the

true distributions (without tildes as in (26)). The analysis residuals

are then

doa = y − h(wa), (28)

≈ y − h(wb)−HB̃HT(HB̃HT + R̃)−1dof . (29) 1030

Desroziers et al. (2005) show that an estimate of the observation

error covariance matrix can be obtained by taking the expectation

of the outer product of the analysis and background residuals,

E[doad
o
f

T
] = R̃(HB̃HT + R̃)

−1
(HBHT + E + F) = Re,

(30)
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where Re is the estimated observation error covariance matrix1035

and B, E, F are the exact background, instrument error and

representation error covariance matrices. If the observation and

forecast errors used in the assimilation are exact, R̃ = R = E + F

and B̃ = B, then

E[doad
o
f

T
] = R = E + F. (31)1040

In practice the statistics used in the assimilation will not be exact,

but Desroziers et al. (2005) show that in this case the diagnostic

may still be used to gain an estimate of the observation error

variances and correlations. As with (26), there is also an implicit

assumption that dof and doa are unbiased, although results using1045

bias corrected data may also be valid (Waller et al. 2016a).

The initial work of Desroziers et al. (2005) suggested

applying the diagnostic in successive iterations. Theoretical and

idealized results relating to the diagnostic under some simplifying

assumptions provide information on how to interpret the results1050

of iterating the diagnostic when the errors used in the assimilation

are not exact (Chapnik et al. 2004, 2006; Desroziers et al. 2005;

Ménard et al. 2009; Desroziers et al. 2009; Ménard 2016). It

is important to not iterate on both the estimates of background

and observation errors concurrently, but to treat them separately.1055

Concurrent iteration results in convergence in one step to a

solution that may or may not be close to the true statistics

(Ménard et al. 2009; Ménard 2016). Furthermore, iterating the

diagnostic can be computationally costly and time consuming and

may produce disappointing results due to the many assumptions1060

that are already required to permit operational assimilation. For

example, Desroziers et al. (2005) state that it “appears that the

adjustment of background and observation error variances is only

relevant if those errors have different structures”. As a result

it is often stated that the method will not yield an accurate1065

result if the scales in the background and observation error

statistics are similar (Bormann and Bauer 2010; Bormann et al.

2010; Stewart et al. 2014; Weston et al. 2014). However, it is

actually the convergence of the iterations that may be slow or

even fail if the scales in the true observation and background or1070

assumed observation and background error covariance matrices

are proportional. Although this scale separation causes problems

for the iteration procedure, it may not result in the failure of the

diagnostic (Waller et al. 2014a).

In some cases the computational framework for including 1075

correlated errors in the assimilation is not yet developed and

hence the iteration of the diagnostic is not always feasible.

Indeed, most of the studies using the diagnostic in operational

NWP to date have considered only the first iterate and still

gained useful information. For example, the diagnostic has also 1080

been applied to calculate satellite inter-channel error covariances

(Stewart et al. 2009, 2014; Bormann and Bauer 2010; Bormann

et al. 2010; Weston et al. 2014; Waller et al. 2016a) and spatial

error covariances (Waller et al. 2016c,a; Cordoba et al. 2016)

in variational assimilation systems, as well as in ensemble data 1085

assimilation systems (Schraff et al. 2016; Lange and Janjić 2016).

It has been applied in atmospheric chemistry (Schwinger and

Elbern 2010) as well. Further work investigating the diagnostic

in simple model experiments includes both variational (Stewart

2010) and ensemble (Li et al. 2009; Miyoshi et al. 2013) 1090

data assimilation systems and its use to estimate time varying

observation errors (Waller et al. 2014a).

Nevertheless, as pointed out by Todling (2015), careful thought

must be applied in interpreting the results from the diagnostic. The

idealized study of Waller et al. (2016b) shows the dependence of 1095

the first iterate on the assumed statistics used in the cost function.

These results have potential use for interpreting the derived

covariances estimated using an operational system. Even though

the results of the diagnostic are subject to uncertainty, they usually

still provide useful information. For example, hypotheses about 1100

the sources of error can be tested by varying the choices made

in the assimilation (background errors, superobbing, observation

operator etc.)(e.g. Waller et al. 2016c,a). However, using more

than one approach is likely to be more successful, for example

using the diagnostics in conjunction with the error inventory 1105

approaches described in section 5.2.

5.2. Uncertainty budgets

While the diagnostic approaches discussed in section 5.1 use

output from the assimilation system to diagnose errors, assuming

all the components of the system are in place, the uncertainty 1110

budget method computes uncertainty estimates without using the
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data assimilation system. Thus uncertainty budgets can include

state dependent errors, e.g., Forsythe and Saunders (2008); Geer

and Bauer (2011). There is a large literature on this topic, since

most if not all observing systems used in operations have had1115

some kind of uncertainty study associated with them. In this

section, we give only a few examples of the types of study

mainly useful for estimation of representation uncertainty for data

assimilation.

Precise metrological studies (e.g., Bulgin et al. 2016a) take1120

the propagation of uncertainty approach defined by the Joint

Committee for Guides in Metrology (2008). If we consider a

variable z, related to a set of input quantities ui, i = 1, 2, . . .m,

by z = f(u1, u2, . . . , um), then ε2(z), the estimated variance

associated with z, is given by1125

ε2(z) =

m∑
i=1

m∑
j=i

(
∂f

∂ui

)(
∂f

∂uj

)
ε(ui, uj), (32)

where ε(ui, uj), is the estimated covariance associated with the

two inputs ui and uj (Joint Committee for Guides in Metrology

2008, Eq. (13)).

A rigorous propagation of uncertainties following (32) is,1130

however, often not practical, so Monte-Carlo simulations together

with error inventory approaches are at times used instead. For

instance, this has been attempted to estimate contributions from

cloud screening, radiative transfer and spatial representativeness

error for the assimilation of hyperspectral infrared radiances (e.g.,1135

Chun et al. 2015). Several studies have carried out simulation

studies to examine pre-processing errors (e.g., Bormann et al.

2014; Lean et al. 2015). Errors arising from observation operator

uncertainty have been considered by Sherlock et al. (2003);

Matricardi (2009) in the context of fast radiative transfer1140

modeling.

5.3. Ensemble method for error due to unresolved scales and

processes

The missing covariance of error due to unresolved scales and

processes in (22) of the traditional filter formulation can be1145

approximated through an ensemble as well in the following way.

Usually, we would take a sample of forecasts at different times to

form an initial ensemble of size Nens. Instead, we take a larger

sample, on which we perform a singular value decomposition

and order the singular values from largest to smallest. We 1150

hypothesize that the singular values that are smaller than the

Nensth value correspond to the unresolved scales and construct

the full unresolved scales matrix Hu
k [Hu

kW
uu
k (·, ·)]T in (22) as a

sample covariance by applying the observation operator to those

singular vectors. The sample of size Nens, as well as the larger 1155

sample, will contain only scales resolved by the model. Therefore,

this approach is similar to the method used in estimating the model

error covariance which sets it proportional to the background

error covariance, except that in this case we use an estimate

from singular vectors that are not contained in ensemble of size 1160

Nens that we are propagating during assimilation for estimation

of background error.

In order to illustrate this approach, we consider two models

for the unresolved scales covariance at the locations where the

observations are. One is a diagonal matrix with equal values 1165

on the diagonal corresponding to the trace of the unresolved

scales singular values. The other model uses the full unresolved

scales matrix at the observation locations. This was applied to

assimilation of SST retrievals in experiments identical to those

described in Losa et al. (2014), except for the observation error 1170

specification where a diagonal matrix with standard deviation

(SD) of 0.8◦C was used in Losa et al. (2014). The recommended

error for SST retrievals is SD of 0.6◦C. Figure 7 illustrates

the verification against independent in-situ salinity measurements

through time at Arkona station in the Baltic Sea. In the figure, 1175

the verification is shown for the free model run, the diagonal

observation error covariance with the SD values 0.6, the inflated

diagonal of 0.8 and 1.2 (left panels), and the diagonal plus the

correlation structure estimated at time 0 from the ensemble for

the 0.6 and 0.8 cases (right panels). Inclusion of the correlation 1180

degrades the verification results in the 0.6 SD case, but improves

the results in 0.8 SD case. Following the study by Kivman et al.

(2001) and Losa et al. (2004), in Losa et al. (2014) the maximum

entropy approach was suggested as an additional criterion for

assessing the assumed prior error statistics in ensemble-based 1185

systems in situations when little is known about model and

data quality (a typical case in oceanographic applications). The

calculation of the entropy values (Losa et al. 2014) leads to 3.59,
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Figure 7. Temporal evolution of the RMSE of salinity forecast against independent observations at one of the Marnet stations in the Arkona Basin (the Baltic Sea).
Validation with use of diagonal observation error covariance (left) is against in situ salinity data (green line), for the free model run (solid black line), the diagonal
observation error covariance with SD 0.6 (blue line) and the inflated diagonal with SD of 0.8 (red line) and 1.2 (dashed line). Validation with use of the diagonal plus the
correlation structure estimated at time 0 from the ensemble (right) is against in situ salinity data (green line), for the free model run (solid black line), with SD 0.6 (blue
line) and SD of 0.8 (red dashed line). In the right panel, the result with inflated diagonal with SD of 0.8 (red line) is redrawn for easier comparison.

3.99 and 4.10 for inflated variance values of 0.6, 1.2 and 0.8.

Once the full unresolved error covariance is added in the 0.81190

case, the entropy value further increase to 4.24 indicating a best

verification result. Therefore, this simple approach of including

the full covariance matrix of the unresolved scales through an

ensemble could give a benefit over further inflating the diagonal

if variances are not underestimated. A similar approach could1195

be used for missing covariances in the Schmidt-Kalman filter

formulation.

5.4. Implementation issues

Due to the complexity of diagnosing and using full observation

error covariance matrices in practice, it is natural to question1200

whether accounting for correlations has any advantage compared

with using diagonal approximations. When observation errors are

incorrectly assumed to be uncorrelated, increasing the observation

density beyond some threshold value has been shown to yield

little or no improvement in analysis accuracy (Berger and1205

Forsythe 2004; Liu and Rabier 2003; Dando et al. 2007; Jacques

and Zawadzki 2014). Furthermore, Stewart et al. (2008) and

Stewart (2010) showed that the observation information content

in the analysis is severely degraded. Such studies, combined

with examples demonstrating that ignoring correlation structure1210

hinders the use of satellite data (e.g., constraining channel

selection algorithms Collard 2007), suggest that error correlations

for certain observation types have an important role to play in

improving numerical weather forecasting.

When the correlated observation errors are accounted for, it has1215

been shown to lead to a more accurate analysis (Stewart et al.

2013; Stewart 2010; Healy and White 2005) and improvements in

the forecast skill score (Weston et al. 2014; Bormann et al. 2016).

Indeed, Stewart et al. (2008, 2013) and Healy and White (2005)

show that even the use of a crude approximation to the observation 1220

error covariance matrix may provide significant benefit.

However, the computational demands of using full observation

error correlation matrices appear to be significant. The size

of the matrices to be stored is reduced by assuming that

the observation error covariance matrix has a block-diagonal 1225

structure, with (uncorrelated) blocks corresponding to different

instruments. If spatial correlations are neglected, the size of the

full submatrices can be reduced further, as has been done for

the operational representation of inter-channel correlations at the

Met Office (Weston 2011; Weston et al. 2014). The representation 1230

of spatial correlations is less straightforward and may require

different parallelization strategies for the assimilation scheme. A

number of approximated forms of spatial correlation matrices (or

their inverses) have been proposed in the literature to increase

numerical efficiency while preserving observation information 1235

content and analysis accuracy (Healy and White 2005; Fisher

2005; Stewart et al. 2008; Stewart 2010; Stewart et al. 2013).

A further issue in variational assimilation is the speed of

convergence of the minimization problem. Typical operational

systems are pre-conditioned with the square root of the 1240

background error covariance matrix (Bannister 2008). This is a

sensible approach for cost functions with diagonal observation

error covariance matrices, where the conditioning of the

minimization problem is dominated by the condition number of
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the background error covariance matrix (Haben 2011; Haben et al.1245

2011). However, Weston (2011) found in an

operational application that reconditioning of diagnosed

observation error covariance matrices was necessary to ensure

convergence of the variational assimilation problem.

Including observation error correlations changes how observa-1250

tion information is filtered in the analysis (Daley 1991, section

4.8). Using spatial correlations, Seaman (1977) noted an increase

in the accuracy of gradients of observed fields represented in

the analysis, and Rainwater et al. (2015) an improvement in

the smallest scales resolved by an NWP model. Weston et al.1255

(2014) and Bormann et al. (2016) note that accounting for inter-

channel correlations modifies the weighting of the observations in

a situation dependent way. When observation-minus-background

departures project strongly onto the leading eigenvectors of the

covariance matrix (associated with the largest eigenvalues), taking1260

error correlations into account will result in a relative down-

weighting of the observations. However, if the departures project

strongly onto the higher order eigenvectors, taking error correla-

tions into account will increase the relative weight on these data.

6. Scale matching approach1265

In operational practice, it has often been assumed that the

observation errors are uncorrelated, as this allows them to be

treated simply and computationally cheaply, with a diagonal error

covariance matrix. In most cases, to compensate for the omission

of error correlation, the observation error variances are inflated1270

so that the observations have a more appropriate lower weighting

in the analysis (e.g., Courtier et al. 1998; Hilton et al. 2009;

Bormann et al. 2016). Furthermore, data reduction methods are

employed to help ensure that the zero-correlation assumption

holds (or almost holds) in practice. For example, observations1275

are spatially thinned so that the distances between assimilated

observations are greater than the observation error horizontal

correlation length. Another technique, known as superobbing,

reduces the density of the data by averaging innovations in a

region and assigning this average (plus the background value) as a1280

single superobservation value. Within the context of convective-

scale data assimilation, the generation of super-observations is

quite necessary for Doppler radar observations, and with the rapid

increase in satellite data at finer pixel spacing, there is a clear need

for superobservations. A mathematical derivation by Berger and 1285

Forsythe (2004) show that the superobbing procedure reduces the

uncorrelated portion of the error; however, the correlated error

is not reduced. A similar result was derived by (van Leeuwen

2015) for averages of raw observations: the correlated part of the

error does not decrease as the number of observations included 1290

in the average increases. However, the assumptions required for

the derivations may not hold in practice. Hence, superobbing or

averaging is often used alongside thinning (e.g., Waller et al.

2016c).

The question arises whether there is a benefit of filtering 1295

the data before they are assimilated into the model to the

approximate resolution of the model. Such approaches are

particularly attractive if fully accounting for the representation

error is more difficult, for instance, due to the presence of spatial

error correlations. Sources of spatial correlations can be error due 1300

to unresolved scales and processes, observation operator error or

pre-processing error. Daley (1993); Liu and Rabier (2002) found

that there is an optimal match between the analysis grid spacing

and the instrument spatial averaging which results in the minimum

representation error. Wu et al. (2011) showed it is possible to 1305

design a grid of control variables in such a way that representation

error is minimized for a given observation network.

Janjić et al. (2012b) assimilated time varying dynamical ocean

topography data (Skachko et al. 2008; Janjić et al. 2012a) filtered

to three different spatial resolutions into a global finite element 1310

ocean model (Danilov et al. 2004; Wang et al. 2008) with

an ensemble Kalman filter algorithm. The results indicate that

assimilating data that contain representation error does not seem

to degrade the accuracy of the large scale analysis as long as the

observation error variance is inflated appropriately. However, in 1315

the study, the assimilation of the higher resolution data did not

significantly effect the SST analysis in higher spectral bands. This

might be a result of using a diagonal observation error covariance

matrix that most likely limits us from exploring the full data

resolution further (Rainwater et al. 2015). 1320

In a second study, carried out at the Met Office (Peter Weston

personal communication) default Cross-track Infrared Sounder

(CrIS) data from the ∼14km resolution field of views (FOVs) was
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compared against averaged CrIS data created by averaging the 3x3

FOVs in each field of regard (FOR) to create super-observations1325

with an effective resolution of ∼42km. The motivation for this

study was to better match the scales between the observations

and the models being used, where the forecast model is N768

(∼17km horizontal resolution) and the assimilation model is N216

(∼60km resolution). The error characteristics of both datasets1330

were estimated using a posteriori diagnostics, such as those

described in section 5, and showed that the averaged dataset had

smaller error standard deviations and weaker correlations due to

smaller representation errors and lower instrument noise through

the averaging. Another effect of the averaging is that the number1335

of observations suitable for assimilation is reduced due to more

of the larger FOVs being contaminated by cloud. When compared

in NWP assimilation trials (including correlated observation error

covariances and using a 4DVar algorithm) the results were broadly

neutral with very slight degradations of up to 0.5% in background1340

fits to observations sensitive to mid tropospheric temperature and

humidity. Therefore, it appears that the negative effects of the

reduction in the number of observations assimilated due to cloud

contamination has more of an effect than the smaller errors due to

the better scale matching and reduced instrument noise.1345

7. Conclusions

Updating the state of a geophysical system given by a discrete

dynamical model by assimilating observations of the system

through time in the data assimilation process requires quantifying

the errors, or uncertainties, in the observations and in the model.1350

The observation error is often much larger than the measurement

error, which is the error associated with the measuring device

alone, particularly in the case of remotely-sensed observations.

We have suggested the term representation error to refer to the

totality of observation error distinct from measurement error.1355

The need to quantify representation error arises in many

different earth science disciplines. It has given rise simultaneously

to successful approaches and to a sometimes discipline-specific

array of terminologies. To help foster overall progress in data

assimilation, and to help enable effective communication between1360

researchers in different disciplines, we have attempted to review

the literature on representation error and its quantification, and to

consolidate the terminology used in different disciplines.

To consolidate the terminology, we have partitioned the

representation error into the error due to unresolved scales and 1365

processes, the observation operator error, and the pre-processing

error, and shown how these can be described mathematically. We

have illustrated these aspects of representation error by means

of examples in satellite radiance data assimilation, in ocean

reanalysis, and in atmospheric composition analysis. We have 1370

shown how the error due to unresolved scales and processes and

the observation operator error can be treated, once quantified

at least, in Kalman filter-type data assimilation algorithms. A

promising avenue to treat the error due to unresolved scales and

processes in the context of (ensemble) Kalman filtering is to use 1375

stochastic physics to determine the mean and covariance of the

unresolved scales as they evolve.

We have described a variety of methods that have been

used, or are currently being explored, to diagnose statistics of

the representation error and its components. A large number 1380

of studies have used forecast and analysis residual diagnostics

to determine observation error correlations in bulk, that is,

without attempting to distinguish among components of the

representation error. Further progress with residual diagnostics

may ensue by attempting to distinguish them, for example by 1385

making and testing hypotheses on the different representation

error components (Waller et al. 2016c). Ensemble methods are

being explored to estimate the error due to unresolved scales and

processes. Statistical adaptation and stochastic modeling are also

just beginning to be explored. 1390

It has become clear that observation error statistics are just as

important as background error statistics in data assimilation, and

that methods to estimate statistics of the representation error must

therefore begin to receive much more research attention. Our hope

is that this article helps to focus efforts in this direction. 1395
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Appendix1415

In case the observations have been pre-processed we can describe

this mathematically in terms of a function g acting on the

observations ỹ that have not been pre-processed, i.e. y = g(ỹ).

Denoting with a tilde, observation operators and measurement

error associated with observations ỹ, then the observation error1420

can be written as

εo = y − g(h̃(wr))

= g(h̃c(w) + ε̃m)− g(h̃(wr)).

Expanding the term g(h̃c(w) + ε̃m) in a Taylor series1425

we get g(h̃c(w) + ˜εm) = g(h̃c(w)) + εm + ε′′′ with

εm = ˜εmg′(h̃c(w)) being now the measurement error of the

pre-processed observations and ε′′′ the remainder term denoting

the pre-processing error. Therefore,

εo = y − g(h̃(wr))1430

= ε′′′ + g(h̃c(w))− g(h̃c(wr))

+ g(h̃c(wr))− g(h̃(wr)) + εm. (33)

If we set hc := g(h̃c) and h := g(h̃), we recover (1).

Note that in the examples discussed in Section 3 of pre-1435

processing for clear-sky radiance assimilation and for correction

of data for tides, on one hand this would reduce the error due to

unresolved scales and processes while on the other hand it would

introduce pre-processing error.
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Janjić T, Schröter J, Savcenko R, Bosch W, Albertella A, Rummel R, Klatt

O. 2012b. Impact of combining GRACE and GOCE gravity data on ocean

circulation estimates. Ocean Sci. 8: 65–79. doi:10.5194/os-8-65-2012.

Jazwinski AH. 1970. Stochastic processes and filtering theory. Academic 1660

Press.

Joint Committee for Guides in Metrology. 2008. Evaluation of

measurement data - guide to the expression of uncertainty in

measurement. Technical report, Bureau International des Poids et

Mesures. Available from http://www.bipm.org/en/publications/guides/. 1665

Joly M, Peuch VH. 2012. Objective classification of air quality monitoring

sites over Europe. Atmos. Env. 47: 111–123.

Prepared using qjrms4.cls

http://journals.ametsoc.org/doi/abs/10.1175/JAM2496.1
http://journals.ametsoc.org/doi/abs/10.1175/JAM2496.1
http://journals.ametsoc.org/doi/abs/10.1175/JAM2496.1
http://dx.doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2


26 Janjić et al.
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